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About us

I Long time FLOSS developers

I Open source enthusiast

I Authors, conference speakers

I Recently founded Qafoo GmbH - passion for software quality

I PMC members of Apache Zeta Components
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HTTP methods
I Well known methods

I GET
I POST

I Less known / used methods
I PUT
I DELETE

I Mostly unknown methods
I HEAD
I OPTIONS
I TRACE
I CONNECT
I WebDAV

I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .
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“Safe” HTTP methods

I “[..] GET and HEAD methods SHOULD NOT have the
significance of taking an action other than retrieval.” [RF99]

I . . . so it is “safe” for spiders to call them.
I Search forms should use method="GET"

I Since nothing is modified, the result can be cached.
I Proxies can use that automatically

I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server
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POST vs. PUT

I PUT creates or replaces a resource
I “[..] requests that the enclosed entity be stored under the

supplied Request-URI.” [RF99]
I “[..] refers to an already existing resource, the enclosed entity

SHOULD be considered as a modified version [..]” [RF99]
I Examples

I Updating a users account data using PUT /users/42
I Creation of resources with known identifiers

I POST appends to an existing resource
I “[..]is used to request that the origin server accept the entity

enclosed in the request as a new subordinate[..]” [RF99]
I Examples [RF99]

I Annotation of existing resources
I Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
I Extending a database through an append operation.
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Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems
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HTTP method fail in PHP

I $ GET contains the request parameters

I $ POST contains the request body
I All HTTP requests may contain a body and request

parameters
I Yes, even GET

I You may want to use something like $request->parameters

and $request->body
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Do you speak HTTP?

I “The methods GET and HEAD MUST be supported by all
general-purpose servers.” [RF99]

I “All other methods are OPTIONAL;” [RF99]
I “however, if the above methods are implemented, they MUST

be implemented with the same semantics as those specified in
section 9.” [RF99]

I Sorry, your website is not HTTP, if you are using POST for a
search form.

I And the search results are not bookmarkable or linkable. . .
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Layered architecture

I HTTP allows layered
architectures

I But what is required to
make this work?

I Request semantic must
be handled by the
proxy

I The server must be
stateless

Client

Database

Application
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Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data
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Drawbacks / Benefits

I Drawbacks
I Users do have state – makes session handling complicated.

I Benefits
I App servers do not scale beyond a single node
I Session data can be hosted on a dedicated cluster
I Failing servers do not matter
I We can use plain random load balancing – massively reduces

complexity of this layer
I PHP scales, because it is build for this (Shared nothing

architecture)
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Embrace HTTP

I Use HTTP to communicate with backend services &
subsystems

I Webservices (REST, Soap, XMLRPC)
I You can reuse your common infrastructure

I Taking it to the next level
I Use HTTP to communicate with your database (CouchDB)
I Option to eliminate layers where appropriate
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I What is REST actually?
I Describes services which follow the HTTP / LCoDC$SS
I Following the resources / concept character of URLs
I Sometimes even respects the Accept-* HTTP headers
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Thanks for listening

I HTTP and PHP are build like this for a reason
I Scalabilty
I Fault tolerance

I More about us:
I http://qafoo.com

http://qafoo.com
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