
HTTP is your architecture
spot-media.de

Kore Nordmann <kore@qafoo.com>
Tobias Schlitt <toby@qafoo.com>

September 27, 2010

HTTP is your architecture 2 / 20

About us

I Long time FLOSS developers

I Open source enthusiast

I Authors, conference speakers

I Recently founded Qafoo GmbH - passion for software quality

I PMC members of Apache Zeta Components

HTTP is your architecture 3 / 20

Architecture

LCoDC$SS

I Who heard of this term before?
I This is HTTP. [Fie00]

HTTP is your architecture 3 / 20

Architecture

LCoDC$SS

I Who heard of this term before?
I This is HTTP. [Fie00]

HTTP is your architecture 3 / 20

Architecture

LCoDC$SS

I Who heard of this term before?
I This is HTTP. [Fie00]

HTTP is your architecture 4 / 20

Architecture

LCoDC$SS

HTTP is your architecture 4 / 20

Architecture

Layered CoDC$SS

HTTP is your architecture 4 / 20

Architecture

Layered Code on Demand C$SS

HTTP is your architecture 4 / 20

Architecture

Layered Code on Demand Client $S Server

HTTP is your architecture 4 / 20

Architecture

Layered Code on Demand Client Cached S

Server

HTTP is your architecture 4 / 20

Architecture

Layered Code on Demand Client Cached

Stateless Server

HTTP is your architecture 5 / 20

Outline

HTTP

Layered

Conclusion

HTTP is your architecture 6 / 20

HTTP methods
I Well known methods

I GET
I POST

I Less known / used methods
I PUT
I DELETE

I Mostly unknown methods
I HEAD
I OPTIONS
I TRACE
I CONNECT
I WebDAV

I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .

HTTP is your architecture 6 / 20

HTTP methods
I Well known methods

I GET
I POST

I Less known / used methods
I PUT
I DELETE

I Mostly unknown methods
I HEAD
I OPTIONS
I TRACE
I CONNECT
I WebDAV

I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .

HTTP is your architecture 6 / 20

HTTP methods
I Well known methods

I GET
I POST

I Less known / used methods
I PUT
I DELETE

I Mostly unknown methods
I HEAD
I OPTIONS
I TRACE
I CONNECT
I WebDAV

I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .

HTTP is your architecture 7 / 20

“Safe” HTTP methods

I “[..] GET and HEAD methods SHOULD NOT have the
significance of taking an action other than retrieval.” [RF99]

I . . . so it is “safe” for spiders to call them.
I Search forms should use method="GET"

I Since nothing is modified, the result can be cached.
I Proxies can use that automatically

I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 7 / 20

“Safe” HTTP methods

I “[..] GET and HEAD methods SHOULD NOT have the
significance of taking an action other than retrieval.” [RF99]

I . . . so it is “safe” for spiders to call them.
I Search forms should use method="GET"

I Since nothing is modified, the result can be cached.
I Proxies can use that automatically

I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 7 / 20

“Safe” HTTP methods

I “[..] GET and HEAD methods SHOULD NOT have the
significance of taking an action other than retrieval.” [RF99]

I . . . so it is “safe” for spiders to call them.
I Search forms should use method="GET"

I Since nothing is modified, the result can be cached.
I Proxies can use that automatically

I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 7 / 20

“Safe” HTTP methods

I “[..] GET and HEAD methods SHOULD NOT have the
significance of taking an action other than retrieval.” [RF99]

I . . . so it is “safe” for spiders to call them.
I Search forms should use method="GET"

I Since nothing is modified, the result can be cached.
I Proxies can use that automatically

I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 8 / 20

POST vs. PUT

I PUT creates or replaces a resource
I “[..] requests that the enclosed entity be stored under the

supplied Request-URI.” [RF99]
I “[..] refers to an already existing resource, the enclosed entity

SHOULD be considered as a modified version [..]” [RF99]
I Examples

I Updating a users account data using PUT /users/42
I Creation of resources with known identifiers

I POST appends to an existing resource
I “[..]is used to request that the origin server accept the entity

enclosed in the request as a new subordinate[..]” [RF99]
I Examples [RF99]

I Annotation of existing resources
I Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
I Extending a database through an append operation.

HTTP is your architecture 8 / 20

POST vs. PUT

I PUT creates or replaces a resource
I “[..] requests that the enclosed entity be stored under the

supplied Request-URI.” [RF99]
I “[..] refers to an already existing resource, the enclosed entity

SHOULD be considered as a modified version [..]” [RF99]
I Examples

I Updating a users account data using PUT /users/42
I Creation of resources with known identifiers

I POST appends to an existing resource
I “[..]is used to request that the origin server accept the entity

enclosed in the request as a new subordinate[..]” [RF99]
I Examples [RF99]

I Annotation of existing resources
I Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
I Extending a database through an append operation.

HTTP is your architecture 8 / 20

POST vs. PUT

I PUT creates or replaces a resource
I “[..] requests that the enclosed entity be stored under the

supplied Request-URI.” [RF99]
I “[..] refers to an already existing resource, the enclosed entity

SHOULD be considered as a modified version [..]” [RF99]
I Examples

I Updating a users account data using PUT /users/42
I Creation of resources with known identifiers

I POST appends to an existing resource
I “[..]is used to request that the origin server accept the entity

enclosed in the request as a new subordinate[..]” [RF99]
I Examples [RF99]

I Annotation of existing resources
I Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
I Extending a database through an append operation.

HTTP is your architecture 8 / 20

POST vs. PUT

I PUT creates or replaces a resource
I “[..] requests that the enclosed entity be stored under the

supplied Request-URI.” [RF99]
I “[..] refers to an already existing resource, the enclosed entity

SHOULD be considered as a modified version [..]” [RF99]
I Examples

I Updating a users account data using PUT /users/42
I Creation of resources with known identifiers

I POST appends to an existing resource
I “[..]is used to request that the origin server accept the entity

enclosed in the request as a new subordinate[..]” [RF99]
I Examples [RF99]

I Annotation of existing resources
I Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
I Extending a database through an append operation.

HTTP is your architecture 8 / 20

POST vs. PUT

I PUT creates or replaces a resource
I “[..] requests that the enclosed entity be stored under the

supplied Request-URI.” [RF99]
I “[..] refers to an already existing resource, the enclosed entity

SHOULD be considered as a modified version [..]” [RF99]
I Examples

I Updating a users account data using PUT /users/42
I Creation of resources with known identifiers

I POST appends to an existing resource
I “[..]is used to request that the origin server accept the entity

enclosed in the request as a new subordinate[..]” [RF99]
I Examples [RF99]

I Annotation of existing resources
I Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
I Extending a database through an append operation.

HTTP is your architecture 8 / 20

POST vs. PUT

I PUT creates or replaces a resource
I “[..] requests that the enclosed entity be stored under the

supplied Request-URI.” [RF99]
I “[..] refers to an already existing resource, the enclosed entity

SHOULD be considered as a modified version [..]” [RF99]
I Examples

I Updating a users account data using PUT /users/42
I Creation of resources with known identifiers

I POST appends to an existing resource
I “[..]is used to request that the origin server accept the entity

enclosed in the request as a new subordinate[..]” [RF99]
I Examples [RF99]

I Annotation of existing resources
I Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
I Extending a database through an append operation.

HTTP is your architecture 8 / 20

POST vs. PUT

I PUT creates or replaces a resource
I “[..] requests that the enclosed entity be stored under the

supplied Request-URI.” [RF99]
I “[..] refers to an already existing resource, the enclosed entity

SHOULD be considered as a modified version [..]” [RF99]
I Examples

I Updating a users account data using PUT /users/42
I Creation of resources with known identifiers

I POST appends to an existing resource
I “[..]is used to request that the origin server accept the entity

enclosed in the request as a new subordinate[..]” [RF99]
I Examples [RF99]

I Annotation of existing resources
I Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
I Extending a database through an append operation.

HTTP is your architecture 9 / 20

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 9 / 20

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 9 / 20

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 9 / 20

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 9 / 20

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 10 / 20

HTTP method fail in PHP

I $ GET contains the request parameters

I $ POST contains the request body
I All HTTP requests may contain a body and request

parameters
I Yes, even GET

I You may want to use something like $request->parameters

and $request->body

HTTP is your architecture 10 / 20

HTTP method fail in PHP

I $ GET contains the request parameters

I $ POST contains the request body
I All HTTP requests may contain a body and request

parameters
I Yes, even GET

I You may want to use something like $request->parameters

and $request->body

HTTP is your architecture 10 / 20

HTTP method fail in PHP

I $ GET contains the request parameters

I $ POST contains the request body
I All HTTP requests may contain a body and request

parameters
I Yes, even GET

I You may want to use something like $request->parameters

and $request->body

HTTP is your architecture 11 / 20

Do you speak HTTP?

I “The methods GET and HEAD MUST be supported by all
general-purpose servers.” [RF99]

I “All other methods are OPTIONAL;” [RF99]
I “however, if the above methods are implemented, they MUST

be implemented with the same semantics as those specified in
section 9.” [RF99]

I Sorry, your website is not HTTP, if you are using POST for a
search form.

I And the search results are not bookmarkable or linkable. . .

HTTP is your architecture 11 / 20

Do you speak HTTP?

I “The methods GET and HEAD MUST be supported by all
general-purpose servers.” [RF99]

I “All other methods are OPTIONAL;” [RF99]
I “however, if the above methods are implemented, they MUST

be implemented with the same semantics as those specified in
section 9.” [RF99]

I Sorry, your website is not HTTP, if you are using POST for a
search form.

I And the search results are not bookmarkable or linkable. . .

HTTP is your architecture 11 / 20

Do you speak HTTP?

I “The methods GET and HEAD MUST be supported by all
general-purpose servers.” [RF99]

I “All other methods are OPTIONAL;” [RF99]
I “however, if the above methods are implemented, they MUST

be implemented with the same semantics as those specified in
section 9.” [RF99]

I Sorry, your website is not HTTP, if you are using POST for a
search form.

I And the search results are not bookmarkable or linkable. . .

HTTP is your architecture 11 / 20

Do you speak HTTP?

I “The methods GET and HEAD MUST be supported by all
general-purpose servers.” [RF99]

I “All other methods are OPTIONAL;” [RF99]
I “however, if the above methods are implemented, they MUST

be implemented with the same semantics as those specified in
section 9.” [RF99]

I Sorry, your website is not HTTP, if you are using POST for a
search form.

I And the search results are not bookmarkable or linkable. . .

HTTP is your architecture 12 / 20

Outline

HTTP

Layered

Conclusion

HTTP is your architecture 13 / 20

Layered architecture

I HTTP allows layered
architectures

I But what is required to
make this work?

I Request semantic must
be handled by the
proxy

I The server must be
stateless

Client

Database

Application

HTTP

HTTP is your architecture 13 / 20

Layered architecture

I HTTP allows layered
architectures

I But what is required to
make this work?

I Request semantic must
be handled by the
proxy

I The server must be
stateless

Client

Database

Application

Proxy

HTTP

HTTP

HTTP is your architecture 13 / 20

Layered architecture

I HTTP allows layered
architectures

I But what is required to
make this work?

I Request semantic must
be handled by the
proxy

I The server must be
stateless

Client

Database

Application

Proxy

HTTP

HTTP

HTTP is your architecture 13 / 20

Layered architecture

I HTTP allows layered
architectures

I But what is required to
make this work?

I Request semantic must
be handled by the
proxy

I The server must be
stateless

Client

Database

Application

Proxy

HTTP

HTTP

HTTP is your architecture 13 / 20

Layered architecture

I HTTP allows layered
architectures

I But what is required to
make this work?

I Request semantic must
be handled by the
proxy

I The server must be
stateless

Client

Database

Application

HTTP

HTTP

Load
Balancer

HTTP is your architecture 13 / 20

Layered architecture

I HTTP allows layered
architectures

I But what is required to
make this work?

I Request semantic must
be handled by the
proxy

I The server must be
stateless

Client

Database

Application

HTTP

HTTP

Load
Balancer

HTTP is your architecture 14 / 20

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

HTTP is your architecture 14 / 20

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

HTTP is your architecture 14 / 20

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

HTTP is your architecture 14 / 20

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

HTTP is your architecture 15 / 20

Drawbacks / Benefits

I Drawbacks
I Users do have state – makes session handling complicated.

I Benefits
I App servers do not scale beyond a single node
I Session data can be hosted on a dedicated cluster
I Failing servers do not matter
I We can use plain random load balancing – massively reduces

complexity of this layer
I PHP scales, because it is build for this (Shared nothing

architecture)

HTTP is your architecture 15 / 20

Drawbacks / Benefits

I Drawbacks
I Users do have state – makes session handling complicated.

I Benefits
I App servers do not scale beyond a single node
I Session data can be hosted on a dedicated cluster
I Failing servers do not matter
I We can use plain random load balancing – massively reduces

complexity of this layer
I PHP scales, because it is build for this (Shared nothing

architecture)

HTTP is your architecture 15 / 20

Drawbacks / Benefits

I Drawbacks
I Users do have state – makes session handling complicated.

I Benefits
I App servers do not scale beyond a single node
I Session data can be hosted on a dedicated cluster
I Failing servers do not matter
I We can use plain random load balancing – massively reduces

complexity of this layer
I PHP scales, because it is build for this (Shared nothing

architecture)

HTTP is your architecture 15 / 20

Drawbacks / Benefits

I Drawbacks
I Users do have state – makes session handling complicated.

I Benefits
I App servers do not scale beyond a single node
I Session data can be hosted on a dedicated cluster
I Failing servers do not matter
I We can use plain random load balancing – massively reduces

complexity of this layer
I PHP scales, because it is build for this (Shared nothing

architecture)

HTTP is your architecture 15 / 20

Drawbacks / Benefits

I Drawbacks
I Users do have state – makes session handling complicated.

I Benefits
I App servers do not scale beyond a single node
I Session data can be hosted on a dedicated cluster
I Failing servers do not matter
I We can use plain random load balancing – massively reduces

complexity of this layer
I PHP scales, because it is build for this (Shared nothing

architecture)

HTTP is your architecture 15 / 20

Drawbacks / Benefits

I Drawbacks
I Users do have state – makes session handling complicated.

I Benefits
I App servers do not scale beyond a single node
I Session data can be hosted on a dedicated cluster
I Failing servers do not matter
I We can use plain random load balancing – massively reduces

complexity of this layer
I PHP scales, because it is build for this (Shared nothing

architecture)

HTTP is your architecture 15 / 20

Drawbacks / Benefits

I Drawbacks
I Users do have state – makes session handling complicated.

I Benefits
I App servers do not scale beyond a single node
I Session data can be hosted on a dedicated cluster
I Failing servers do not matter
I We can use plain random load balancing – massively reduces

complexity of this layer
I PHP scales, because it is build for this (Shared nothing

architecture)

HTTP is your architecture 16 / 20

Embrace HTTP

I Use HTTP to communicate with backend services &
subsystems

I Webservices (REST, Soap, XMLRPC)
I You can reuse your common infrastructure

I Taking it to the next level
I Use HTTP to communicate with your database (CouchDB)
I Option to eliminate layers where appropriate

HTTP is your architecture 16 / 20

Embrace HTTP

I Use HTTP to communicate with backend services &
subsystems

I Webservices (REST, Soap, XMLRPC)
I You can reuse your common infrastructure

I Taking it to the next level
I Use HTTP to communicate with your database (CouchDB)
I Option to eliminate layers where appropriate

HTTP is your architecture 17 / 20

What is REST?

I What is REST actually?
I Describes services which follow the HTTP / LCoDC$SS
I Following the resources / concept character of URLs
I Sometimes even respects the Accept-* HTTP headers

HTTP is your architecture 17 / 20

What is REST?

I What is REST actually?
I Describes services which follow the HTTP / LCoDC$SS
I Following the resources / concept character of URLs
I Sometimes even respects the Accept-* HTTP headers

HTTP is your architecture 17 / 20

What is REST?

I What is REST actually?
I Describes services which follow the HTTP / LCoDC$SS
I Following the resources / concept character of URLs
I Sometimes even respects the Accept-* HTTP headers

HTTP is your architecture 17 / 20

What is REST?

I What is REST actually?
I Describes services which follow the HTTP / LCoDC$SS
I Following the resources / concept character of URLs
I Sometimes even respects the Accept-* HTTP headers

HTTP is your architecture 18 / 20

Outline

HTTP

Layered

Conclusion

HTTP is your architecture 19 / 20

Thanks for listening

I HTTP and PHP are build like this for a reason
I Scalabilty
I Fault tolerance

I More about us:
I http://qafoo.com

http://qafoo.com

HTTP is your architecture 20 / 20

Bibliography I

[Fie00] R. Fielding, Architectural styles and the design of network-based
software architectures, Ph.D. thesis, University of California, Irvine,
USA, 2000.

[RF99] et al. R. Fielding, Hypertext transfer protocol – http/1.1,
http://tools.ietf.org/html/rfc2616, June 1999.

http://tools.ietf.org/html/rfc2616

	HTTP
	Layered
	Conclusion

