
2024-02-23

Why a slim
domain

model is superior
in web

Hi, I’m Toby! You might know me from …

● Web since 1996, PHP since 2000

● Principal Engineer at commercetools Frontend
https://commercetools.com

2004 2014 2019

https://commercetools.com

The pitch

● Weblogic does not fit well into a fat domain model

● Weblogic is not complex enough to justify a fat domain model

Oh those buzzwords

My abstract contains quite some buzz words:

● Slim (/fat) domain model
● Aggregate root & entity (-bound logic)
● Hexagonal architecture

The intentio
n of th

is slide is to scare

you so much, th
at you won’t b

e scared

by the next slides.

Let’s start with some definitions first!

∮𝔾 = ∑ (⊕), ∀⊕ ∃⊠ | ⊠ ∌ 𝕄

Agenda

1. Hexagonal Architecture
2. Domain Model
3. Fat vs. Slim Domain Model
4. Issues by example
5. Conclusion

Hexagonal
Architecture

Hexagonal Architecture

Hexagonal Architecture

● Decoupling of domain and infrastructure
● Testability by decoupling
● Make infrastructure replaceable
● “Portability”

Domain Model

Domain Model

● Business logic
● Written in code

● Ideally: Following a common “style”

Domain Model: By example

● Bank:
○ Account balancing
○ Interest calculation

● Medical:
○ Decision support systems

● Manufacturing:
○ Material requirement planning
○ Supply chain optimization

Web vs. Non-Web

Web application

● Optimized for working on the internet

● Built for horizontal scaling

● Built for proper response times on the web

● Typical: database ↔ code ↔ frontend

Application with a web-style API

● Internet usage is not primary goal

● Web-style API is just there to ease

● Typically not built for horizontal scaling

Web Domain Model: By Example

● Content management:
○ Publishing flow
○ Content composition

● eCommerce:
○ Product catalogue (incl. TikTok shops, apps, …)
○ Checkout flow
○ Story telling

● E-Learning:
○ Course enrollment
○ Content consumption

Web Application Business Logic

* educated, defensive guess

Fat vs. Slim

Fat (Rich) vs. Slim (Anemic)

Non-inclusive terminology.

Let’s adapt our language

● Fat (rich) → Comprehensive
● Slim (anemic) → Streamlined

Comprehensive vs. Streamlined

Comprehensive domain model

● Close encapsulation (data+logic)
● Deeply nested object trees
● Focus on modelling the real

world in code

Streamlined domain model

● Data & logic more separated
● Focus on read/write separation
● Maybe more “procedural”? 🤔

By example

* by xkcd.com

User

Comprehensive User Model

class User
{
 private string $email;
 public function __construct(string $email)
 {
 $this->setEmail($email);
 }
 public function setEmail(string $email): void
 {
 if (filter_var($email, FILTER_VALIDATE_EMAIL) === false) {
 throw new \InvalidArgumentException('Invalid email');
 }
 $this->email = $email;
 }
}

Comprehensive User Service

class UserService
{
 public function __construct(private UserRepository $userRepository)
 {
 }
 public function createUser(string $email): User
 {
 $user = new User($email);
 $this->userRepository->save($user);
 return $user;
 }
}

Comprehensive User Model

class User
{
 public function setEmail(string $email): void
 {
 if (filter_var($email, FILTER_VALIDATE_EMAIL) === false) {
 throw new \InvalidArgumentException('Invalid email');
 }

 [$user, $domain] = explode('@', $email);
 if (checkdnsrr($domain, 'MX') === false) {
 throw new \InvalidArgumentException('Invalid email');
 }
 $this->email = $email;
 }
}

The Injection Issue

● Comprehensive works best when all logic is local

● As soon as an external logic is required:
○ Retrieve service globally (e.g. Singleton)
○ Inject service into model
○ Extract logic into service

Streamlined User Model

class User
{
 public string $email;
 public function __construct(string $email)
 {
 $this->email = $email;
 }
}

Streamlined User Service

class UserService
{
 public function __construct(private UserRepository $userRepository)
 {}
 public function createUser(string $email): User
 {
 $this->validateEmail($email);

 $user = new User($email);
 $this->userRepository->save($user);
 return $user;
 }
 private function validateEmail($email): void
 {
 /* ... */
 }
}

Streamlined User Service - Reusability

class UserService
{
 public function __construct(
 private UserRepository $userRepository, private EmailValidator $emailValidator)
 {}
 public function createUser(string $email): User
 {
 $this->emailValidator->validateEmail($email);

 $user = new User($email);
 $this->userRepository->save($user);
 return $user;
 }
}

Orders

Comprehensive Orders

namespace Comprehensive;

class User
{
 /** @var Order[] */
 private array $orders = [];
}
class Order
{
 private string $id;
 private \DateTimeImmutable $orderDate;
 private Address $deliveryAddress;
 private Address $billingAddress;
 /** @var OrderItem[] */
 private array $orderItems = [];
 private int $sumCents;
}

How do you display a (paged) order overview page?

● Load the entire User object tree
○ Delivers much more information to the frontend than needed
○ Paging requires logic in the code

● Use ORM lazy / partial loading features
○ “Dark magic”
○ Non-functional domain model
○ “Accidental” use of domain function → full model loaded

● Introduce a dedicated model for that purpose

Streamlined Orders

namespace Streamlined;
class OrderOverview
{
 public string $orderId;
 public \DateTimeImmutable $orderDate;
 public int $sumCents;
}

How do you display a (paged) order overview page?

● Service dispatches to the database
○ Probably with hand-written SQL

● Efficiently load the exact view you need

But wait …

What about all the complex domain logic in
checkout and order processing?

● You might want a dedicated service for that
○ But that is not a “web application”

● I know an awesome headless commerce system “by accident”:
https://commercetools.com

https://commercetools.com

Summary

But …

● … Fowler says a streamlined domain model is an anti pattern
○ I disagree
○ There is no general wrong & right

● … can’t I put any domain logic on my data objects?
○ Anything that is “eternal truth”
○ Anything that does not require external services

● … do I need to change my whole coding style now?
○ Of course not!
○ I just want to make you aware that there is more

Conclusion

● Modern web applications access distributed business logic

● A single web application itself typically does not contain enough logic to
justify a comprehensive (was: “fat”) domain model

● A comprehensive domain model might actually hinder you to build the web
application logic you want

● Attaching “headless” expert systems for sophisticate business logic is a great
way to streamline your web application

Q/A

https://schlitt.info

https://schlitt.info

