j@%ﬁé Why a slim

domain
model is superior
in web

ConFoo CA

EEEEEEE CONFERENC

2024-02-23

Hi, I'm Toby! You might know me from ...

VWV WL W I TU U WY G s o

1/ Microsoft Public Cloud
GREATE APP! Q 1/ Use any 05, Language, Database or Tool

EARN POINT
GET REWARDS

// Global Datacenters, 99.95% Monthly SLA

FRONTASTIC.CLOUD
Frontastic closes Pre-Series-A over 1.8 million euros -
FRONTASTIC - agile Frontend as a Service

2004

e Web since 1996, PHP since 2000

2019

e Principal Engineer at commercetools Frontend
https://commercetools.com

—w§€w 4TRSS

https://commercetools.com

The pitch

e Weblogic does not fit well into a fat domain model

e Weblogic is not complex enough to justify a fat domain model

Oh those buzzwords

My abstract contains quite some buzz words:

e Slim (/fat) domain model o
e Aggregate root & entity (-bound logic) ‘\(\0 6(\"\
e Hexagonal architecture \

Let's start with some definitions first!

$G=3(®), Ve A= |x2dM

Agenda

1.
2.
3.
4.
d.

Hexagonal Architecture
Domain Model

Fat vs. Slim Domain Model
Issues by example
Conclusion

Hexagonal
Architecture

Hexagonal Architecture

>—| Domain

Hexagonal Architecture

Decoupling of domain and infrastructure
Testability by decoupling

Make infrastructure replaceable
“Portability”

Domain Model

Domain Model

e Business logic
e Written in code

e Ideally: Following a common “style”

Domain Model: By example

e Bank:

o Account balancing
o Interest calculation

e Medical:
o Decision support systems

e Manufacturing:
o Material requirement planning
o Supply chain optimization

Web vs. Non-Web

Web application Application with a web-style API
e Optimized for working on the internet e Internet usage is not primary goal
e Built for horizontal scaling e Web-style APl is just there to ease
e Built for proper response times on the web e Typically not built for horizontal scaling

e Typical: database < code « frontend

Web Domain Model: By Example

e Content management:

o Publishing flow
o Content composition

e eCommerce:
o Product catalogue (incl. TikTok shops, apps, ...)
o Checkout flow
o Story telling

e E-Learning:
o Course enrollment
o Content consumption

Web Application Business Logic

Domain Logic in Web Applications

Domain Other

* educated, defensive guess

Fat vs. Slim

Fat (Rich) vs. Slim (Anemic)

Non-inclusive terminology.

Let's adapt our language

e Fat (rich) — Comprehensive
e Slim (anemic) — Streamlined

Comprehensive vs. Streamlined

Comprehensive domain model Streamlined domain model
e Close encapsulation (data+logic) e Data & logic more separated
e Deeply nested object trees e Focus on read/write separation
e Focus on modelling the real e Maybe more “procedural”? &

world in code

By example

fr £

User

Comprehensive User Model

class User

{

private string Semail;
public function __construct(string Semail)

{ Sthis->setEmail(Semail);
gublic function setEmail(string Semail): void
{ if (filter_var(Semail, FILTER_VALIDATE_EMAIL) === false) {
throw new \InvalidArgumentException('Invalid email');
éthis—>email = Semail;
}

Comprehensive User Service

class UserService

{
public function __construct(private UserRepository SuserRepository)
{
b
public function createUser(string Semail): User
{
Suser = new User(Semail);
Sthis->userRepository->save(Suser);
return Suser;
}

Comprehensive User Model

if (checkdnsrr(Sdomain, 'MX') === false) {
throw new \InvalidArgumentException('Invalid email');

}

The Injection Issue

e Comprehensive works best when all logic is local

e As soon as an external logic is required:
o —Retri . robatty-te-g=Singf 3
0 Jni . el

o Extract logic into service

Streamlined User Model

class User
{
public string Semail;
public function __construct(string Semail)

{

Sthis->email = Semail;

}

Streamlined User Service

class UserService

{
public function __construct(private UserRepository SuserRepository)
{}
public function createUser(string Semail): User
{
Sthis->validateEmail(Semail);
Suser = new User(Semail);
Sthis->userRepository->save(Suser);
return Suser;
}
private function validateEmail(Semail): void
{
}

Streamlined User Service - Reusability

class UserService

{

public function __construct(
private UserRepository SuserRepository, private EmailValidator SemailValidator)

{}

public function createUser(string Semail): User

{
Sthis->emailValidator->validateEmail(Semail);
Suser = new User(Semail);
Sthis->userRepository->save(Suser);
return Suser;

}

n
—
D
O
e
@,

Comprehensive Orders

namespace Comprehensive;

class User

{
@var
private array Sorders = [];
}
class Order
{

private string S$id;
private \DateTimeImmutable SorderDate;
private Address SdeliveryAddress;
private Address SbillingAddress;

@var
private array SorderItems = [];
private int SsumCents;

How do you display a (paged) order overview page?

e Load the entire User object tree

o Delivers much more information to the frontend than needed
o Paging requires logic in the code

e Use ORM lazy / partial loading features
o “Dark magic”
o Non-functional domain model
o “Accidental” use of domain function — full model loaded

e Introduce a dedicated model for that purpose .

Streamlined Orders

namespace Streamlined;
class OrderOverview

{

bublic string SorderId;
bublic \DateTimeImmutable SorderDate:
bublic int SsumCents:

How do you display a (paged) order overview page?

e Service dispatches to the database
o Probably with hand-written SQL

e Efficiently load the exact view you need

But wait ...

What about all the complex domain logic in
checkout and order processing?

e You might want a dedicated service for that
o But thatis not a “web application”

e | know an awesome headless commerce system “by accident”:
https://commercetools.com

https://commercetools.com

Summary

But ...

e ..Fowler says a streamlined domain model is an anti pattern
o | disagree
o There is no general wrong & right

e ..can'tlputanydomain logic on my data objects?
o Anything that is “eternal truth”
o Anything that does not require external services

e ..do I needto change my whole coding style now?
o Of course not!
o | just want to make you aware that there is more

Conclusion
e Modern web applications access distributed business logic

e A single web application itself typically does not contain enough logic to
justify a comprehensive (was: “fat”) domain model

e A comprehensive domain model might actually hinder you to build the web
application logic you want

e Attaching “headless” expert systems for sophisticate business logic is a great
way to streamline your web application

Q/A

https://schlitt.info

https://schlitt.info

