
The Cache
Delusion
Not a Golden Hammer

1

Hello, I’m Toby!

2

Principal Engineer (backend) at

You might also know me from:

Why this talk?

3

4

What actually is a cache?

function someFunction()
{
 return timeConsumingOperation();
}

function someFunction()
{
 $result = $cache->get(‘time-consuming-operation-result’);
 if (!$result) {
 $result = timeConsumingOperation();
 $cache->put(‘time-consuming-operation-result’, $result);
 }
 return $result;
}

5

Variations

● Execute timeConsumingOperation() in another process

○ Re-calculation does not happen on the fly

● Implement cache for a larger number of operations in a dedicated layer

○ For example in an event system / pipes & filters

● Various individual adjustments …

6

Goals of this talk

● Many might know: I try to avoid caching where possible

● This talk should give you some insights into: WHY?

● It also should give you some tools to evaluate

when and how
caching can be a solution

7

01 Cache layer level

02 Currentness expectations

03 Cache dimensions

04 Purging / invalidation strategy

05 Examples: Caching gone wrong

06 Lessons to be learned

Factors of cache design

8

… or where to put the pitfalls

Caching on layers

9

10

11

Select the layer for caching wisely

● Choose only a single layer for the cache

● Never implement caches on multi-level!

● If possible: Put the cache outside of the system

○ e.g. full-page frontend caching
○ e.g. HTTP cache in front of a REST API

12

… or why caching is a business decision

Currentnes expectations

13

Currentness expectations

● How long would you expect
this page can be cached?

14

Currentness expectations

● Typical cache times by example:

○ 1 day (sitemap)

○ 15 minutes (start page with news articles)

○ 1 second (stock price on trading platform)

● If you cache complex structures: What is the most time-critical part?

15

Currentness expectations

● Do you accept staleness during re-calculation?

● Do you accept temporary inconsistencies?

16

… or how a cache becomes a system component

Cache dimensions

17

What cache size do you need?

● How big is a data item you want to cache?

○ 16 KB single coco product as JSON

○ 250 KB homepage, HTML only

○ 1.9 MB compiled Symfony container as PHP files

● How many items to you need to cache?

○ 75k products in a shop

○ 30k pages in a site (per language)

○ 1 compiled Symfony container per server

● + Meta-Data overhead, index, …

18

Where & how fast do you need to access your cache?

● CPU L1 cache 0.5 ns

● 1 MB in RAM 250 µs

● 1 MB on SSD 1 ms

● Network roundtrip CA -> NL -> CA 150 ms

● + Processing overhead in your program

(1 ms = 1,000 µs = 1,000,000 ns)

● Credits: Latency numbers every programmer should know

Local server!

19

https://gist.github.com/hellerbarde/2843375

Typical cache storages

● Local hard disk / SSD

● Memcache

● Redis

● *MySQL

20

… or when complexity kicks in

Purging / invalidation

21

Invalidation or purging

● 2 typical invalidation strategies:

○ Passive invalidation via TTL (time to live)

○ Active via purge-on-update

● Let’s see the complexity in the upcoming examples

22

If your cache is too small

● Fast caches are typically small

● Cache purging strategies need to kick in, choose a strategy:

○ FIFO (first in, first out)

○ LRU (least recently used)

○ LFU (least frequently used)

○ Want more? Find here: https://en.wikipedia.org/wiki/Cache_replacement_policies

23

https://en.wikipedia.org/wiki/Cache_replacement_policies

… or how I shot myself in the foot, Toby-edition

Examples: Caching gone wrong

24

Login: The naive full page cache

● Idea:

○ Cache all pages fully for 120 seconds

● Pitfall:

○ Expose logged in user data to next visitor

25

CMS: Purge when page data changes

● Idea:

○ 1 full page = 1 cache item
○ Endless TTL
○ Purge cache for page when data changes

● Pitfall:

○ Render menu / links dynamically from page structure
○ →purge entire cache on change of every page

26

ORM: Cache single entities

● Idea:

○ Build cache into object relational mapping
○ Cache each entity by its ID

● Pitfall:

○ Fetching lists of entities: Needs full fetch + replacement of entities by ID
○ Partially fetched (complex) entities pollute the cache with incomplete data

27

Under load: Cache stampede

28

Dynamic route cache

● Idea:

○ Routes are needed in every request
○ They are compiled from the node tree
○ Node tree changes only on incoming replication
○ →Compile & cache routes on incoming replication only (local server!)

● Pitfall:

○ With few instances: likelihood an instance receives replication is high
○ With many instances: instances end up with outdated route cache

29

Sitemap rendering

● Idea:

○ Sitemaps are crawled only rarely
○ Generating them takes much time
○ →Run generation nightly on every server and store static files

● Pitfall:

○ Few deployments + load peeks
○ Newly created instances have outdated sitemaps

30

… or how to prevent caching in the first place

Lessons to be learned

31

What problem do you actually want to solve?

● Slow code execution

● Frequent request scaling

● Large resource consumption

● …

32

Analyze the cause of the problem!

33

Try to solve the issue without caching

● Database indexes

● Algorithmic improvements

● Make code asynchronous

34

If you cannot come around caching …

Design your cache thoughtfully!

● Choose a single layer for caching
● Try to keep the cache outside of the system
● Gather currentness expectations
● Calculate cache dimensions & buy enough RAM
● Create a proper system setup for your cache
● Take measurements to prevent typical issues like cache stampede

35

Conclusion

There are 3 essential challenges in computer
science:

● Caching
● Off-by-one bugs

36

37

Questions? Answers!

Get the slides:
https://schlitt.info

https://schlitt.info

