
When To Abstract
IPC Spring Edition 2017

Kore Nordmann & Tobias Schlitt (@qafoo)
30th May, 2017



Hi



You: A Pattern Recognition Machine



Fast Category Learning∗

Look:
A table

*Psychology of Learning and Motivation (Band 43)
Academic Press, 04.09.2003

Table? Table. Table!



Discover A Problem: Pattern Recognition



When To Stop?



Types Of Development

Project

Library

Technical
Patterns

Commodity

Business
Patterns

Business drives
usecases

Well defined
usecase

Others build
upon usecase

Adapts globally
to usecases

Requires basic
extensibility

Everything will
be extended

Developers: :-|

Developers: :-D Developers: O_o



Pareidolia



Discover Business Patterns



Project Development

OK – what should we do?



Business Requirements Will Never Converge



Embrace Change

Split vertically instead of horizontally

I How much code can be re-used for that new user registration
through Facebook?

Usecase 1 Usecase 2

View

Controller

Services

Storage

Usecase 3 Usecase 4 Usecase 5



Embrace Change

Avoid Pareidolia when creating abstractions

I Never abstract before you have seen the second / third usage
of something

I “Duplication is better than the wrong abstraction”1

1https://medium.com/@rdsubhas/

10-modern-software-engineering-mistakes-bc67fbef4fc8

https://medium.com/@rdsubhas/10-modern-software-engineering-mistakes-bc67fbef4fc8
https://medium.com/@rdsubhas/10-modern-software-engineering-mistakes-bc67fbef4fc8


Embrace Change

Logic in Value Objects should model eternal truth

I There is almost no eternal truth in commodity software
I There might be some eternal truth in libraries
I There is much global truth encoded in your project already



Embrace Change

Facades are good if they simplify multiple cases
of usage of externals

I Do not implement the next generic query / mapper / . . .



The Joy Of Refactoring



The Joy Of Refactoring

“Legacy Code” already contains all the “stable”
business logic

I Let the patterns emerge
I Rewrites would, as always, forget some (40%) of the domain

rules
I When refactoring, a developer can do Domain Driven Design

on its own



The Joy Of Refactoring

Refactoring is default behaviour

I Just like testing, you refactor code when it makes sense
I The Domain changes – so does the code



The Joy Of Refactoring

When shall I refactor?

I The more you wait the more you know
I The more technical dept there is, the harder it gets
I Same as testing: Keep the crucial parts clean & tested



Summary

Library Project Commodity

Extensibility + Extensibility - Extensibility +++

API-Stability +++ API-Stability +API-Stability -

Modifiability +++ Modifiability ++Modifiability +

Optimize for
change

Optimize for 
modfications with
stable core

Optimize for 
stability with
customizations



Summary

Do not abstract!∗

You are not Symfony

* Except you develop commodity software or a library or it makes sense.



https://qafoo.com/newsletter

https://qafoo.com/newsletter

