
Refactoring with Design Patterns

Benjamin Eberlei, Qafoo GmbH
June 27, 2014



Motivation

Neglecting design leads to
underengineering



Motivation

focusing on Design-Pattern leads to
overengineering



Refactoring

I small changes to internal code structure
I Apply extract method and class again and again
I Commit every change to version control if possible
I Let IDEs help you automate (PHPStorm, Qafoo Refactoring

Browser, ...)



What about tests?

I Having tests for refactoring is very helpful
I .. but it works without



Refactoring and Patterns

Refactoring towards Patterns to avoid
both under- and overengineering.



Code

http://qa.fo/dpc14



Factory

A factory creates an object for you.

I Getting control over object creation
I Most important issue for every code-base
I Actually 4 patterns

I Factory
I Factory Method
I Abstract Factory
I Builder



Facade

A facade provides a simplified interface to a larger body of code.

I Make code reusable (business logic, ..)
I Integrate third party code (libraries)
I Avoid hard dependencies on technical details
I Strongly Related to the Adapter/Bridge patterns



Strategy/Policy Pattern

Strategy allows to exchange algorithms at run time.

I Object-oriented switch statement
I When calculations are changing frequently
I Or when they change based on state
I Construction of strategies often combined with a factory



Inhouse Trainings

We promote high quality code with trainings and consulting
http://qafoo.com

I Refactoring

I Object-Oriented-Design, Testing and many more

I Twitter @beberlei and @qafoo

http://qafoo.com


Qafoo Profiler Closed Beta

http://qa.fo/profiler

http://qa.fo/profiler


https://joind.in/10861

https://joind.in/10861

